Day 58 – Logic Laws

We can use logical equivalences to reduce complex formulas into simpler ones.

Two new symbols

  • T: Tautology (always 1)
  • F: Contradiction (always 0)

Identity Law

p\;\wedge\;T\;\iff\;p\\p\;\vee\;F\;\iff\;p

P and True will be true when both P and Tautology are true.

P or False will be true when either is true, but False will never be true.

Domination Law

p\;\vee\;T\;\iff\;T\\p\wedge F\iff F

In domination law, P or True, P doesn’t really matter as T will always be true.

Example:

(p\;\vee\;F)\;\wedge\;(q\;\vee T)\\(p\;\vee\;F)\;\iff p\;=Identity Law\\(q\;\vee\;T)\iff T\;=DominationLaw\\p\;\wedge\;T\iff p\;=\;IdentityLaw\\Therefore:\\p

Therefore, we can replace the formula as they are logically equivalent with each other:

(p\;\vee\;F)\;\wedge\;(q\;\vee T)\;\iff p

Double Negation Law (DN)

\neg\neg p\;\iff p

If you reverse a value twice, it’s like not reversing at all.

DeMorgan’s Law (DEM)

\neg(p\;\wedge q)\iff \neg p\;\vee\;\neg q\\\neg(p\;\vee q)\iff\neg p\;\wedge\;\neg q

One thing to remember, distribute the negation and flip the connective.

Example:

\neg(\neg p\;\wedge\;\neg q)\\\neg\neg p\;\vee\;\neg\neg q\;=DeMorgan's\\p\;\vee\;q\;=\;Double Negation

Distributive Law

p\;\wedge\;(q\;\vee\;r)\;\iff (p\,\wedge\,q)\,\vee\,(p\,\wedge\,r)\\p\;\vee\;(q\;\wedge\;r)\iff\,(p\,\vee\,q)\,\wedge\,(p\,\vee\,r)

Review:=

3x(1+2)\;=(3x1)\,+\,(3x2)

Absorption Law

p\;\wedge\;(p\;\vee\;q)\;\iff p\\p\;\vee\;(p\;\wedge\;q)\;\iff p

Example:

\neg\neg p\,\vee ((p\,\vee\,F)\,\wedge\,\neg\neg q)\\p\,\vee\,((p\,\vee\,F)\,\wedge\,q)\;=DN*2\\p\,\vee\,(p\,\wedge\,q)\;=ID\\p\;=\;AbsorptionLaw

Commutativity Law

Flip the order.

p\,\wedge q\iff q\,\wedge\,p\\p\,\vee\,q\iff q\,\vee p

Associativity Law

Moving the order, just make sure they share the same connectives, otherwise we would be doing Distributive Law.

p\,\wedge\,(q\,\wedge\,r)\;\iff (p\,\wedge q)\,\wedge r\\p\,\vee\,(q\,\vee\,r)\;\iff (p\,\vee q)\,\vee r

Inverse Law

p\,\wedge \neg p \iff F\\p\,\vee\,\neg p\iff T

Conditional Law

p \rightarrow\,q\iff \neg p\,\vee q

Example:

Show:

(\neg (p\,\wedge q)\wedge q)\iff (\neg p\,\wedge q)

Whenever we see a ¬ outside of brackets, we can do DeMorgan’s first.

(\neg p\,\vee \neg q)\,\wedge q

Whenever we see opposite ∧ and inside and outside brackets, we can use Distributivity.

(q\,\wedge \neg p)\,\vee\,(q\,\wedge \neg q)

Next, we see:

q\,\wedge\,\neg q

This is Contradiction or always false, so we can do Inverse Law:

(q\,\wedge \neg p)\,\vee\,F

Now, anything with “or False” is Identity Law

(q\,\wedge \neg p)\,\vee\,F\;\iff q\,\wedge \neg p

Then using Commutativity Law, we can flip the order:

\neg p \wedge q

Therefore, the answer is TRUE:

(\neg (p\,\wedge q)\wedge q)\iff (\neg p\,\wedge q)
Identity Law
Domination Law
Double Negation
DeMorgan’s Law
Distributive Law
Absorption Law
Commutativity Law
Associativity Law
Inverse Law
Conditional Law
This entry was posted in Study Notes and tagged , , , , . Bookmark the permalink.

Leave a Reply