1 Alphabets and Languages

Look at handout 1 (inference rules for sets) and use the rules on some examples like

$$
\begin{aligned}
& \{a\} \subseteq\{\{a\}\} \\
& \{a\} \in\{a, b\}, \\
& \{a\} \in\{\{a\}, \\
& \{a\} \subseteq\{\{a\}\}, \\
& \{a\} \subseteq\{a, b\}, \\
& a \subseteq\{\{a\}\}, \\
& a \in\{a, b\}, \\
& a \in\{\{a\}\}, \\
& a \subseteq\{a, b\}
\end{aligned}
$$

Example: To show $\{a\} \subseteq\{a, b\}$, use inference rule L1 (first one on the left). This asks us to show $a \in\{a, b\}$. To show this, use rule L5, which succeeds.

To show $\{a\} \in\{a, b\}$, which rule applies?

- The only one is rule L4. So now we have to either show $\{a\}=a$ or $\{a\}=b$. Neither one works.
- To show $\{a\}=a$ we have to show $\{a\} \subseteq a$ and $a \subseteq\{a\}$ by rule L8. The only rules that might work to show $a \subseteq\{a\}$ are L1, L2, and L3 but none of them match, so we fail.
- There is another rule for this at the very end, but it also fails.
- To show $\{a\}=b$, we try the rules in a similar way, but they also fail.

Therefore we cannot show that $\{a\} \in\{a, b\}$. This suggests that the statement $\{a\} \in\{a, b\}$ is false.

Suppose we have two set expressions only involving brackets, commas, the empty set, and variables, like $\{a,\{b, c\}\}$ and $\{a,\{c, b\}\}$. Then there is an easy way to test if they are equal. If they can be made the same by

- permuting elements of a set, and
- deleting duplicate items of a set
then they are equal, otherwise they are not equal.
- So $\{a,\{b, c\}\}$ and $\{a,\{c, b\}\}$ are equal and $\{a, a, b\}$ and $\{b, a\}$ are equal, but $\{a, b\}$ and $\{c, b\}$ are not.
- These rules show, for example, that $\{a\}=a$ and $\{a\}=b$ are both false, which shows quickly that $\{a\} \in\{a, b\}$ is false.

These rules are not needed for simple examples, but they can help when there are many brackets to consider.

1.1 Alphabets

An alphabet is a finite set of symbols.
Alphabets are denoted by Σ.

1.2 Strings

- A string over an alphabet is a finite sequence of symbols from the alphabet.
Example: If Σ is $\{0,1\}$ then 01101 is a string over Σ.
- The empty string is ϵ. The book uses e for this.
- If Σ is an alphabet then Σ^{*} is the set of strings over Σ.

For example, if Σ is $\{0,1\}$ then Σ^{*} is the set of binary sequences.

- The length of a string is the number of symbol occurrences in it. The length of 01101 is 5 .
- The concatenation of two strings x and y is denoted by $x y$ or $x \circ y$.

Note that $x \circ \epsilon=\epsilon \circ x=x$.

- v is a substring of w if there are strings x and y such that $w=x v y$. Thus $b c$ is a substring of $a b c a b$.

Question: How many substrings are there in a string of length n ?

- A suffix of a string is a substring that ends at the end of the string.
- A prefix of a string is a substring that begins at the beginning of the string.
Thus $b c$ is a suffix of $a b c$ and $a b$ is a prefix of $a b c$.
How many suffixes are there of a string of length n ?
- w^{i} is the string w repeated i times.

Thus $a b a b a b=(a b)^{3}$.

- w^{R} is the string w with the letters in reverse order.

Thus $(a b)^{R}=b a$.

1.3 Languages

A language over an alphabet Σ is a subset of Σ^{*}, that is, it is a set of strings over Σ.

Thus $\{0,1,00,11\}$ is a language over $\{0,1\}$.
The set of odd length binary strings is also a language over $\{0,1\}$.
The set of all binary strings (that is, $\{0,1\}^{*}$) is also a language over $\{0,1\}$.

1.4 Operations on Languages

Now we will study operations on languages. These take one or two languages and produce another language from them.

1.4.1 Complement

If A is a language over Σ then \bar{A}, the complement of A, is $\Sigma^{*}-A$.
Example: If Σ^{*} is $\{0,1\}^{*}$, what is the complement of $\{00\}$?

1.4.2 Concatenation

If L_{1} and L_{2} are languages then $L_{1} \circ L_{2}$, or $L_{1} L_{2}$, the concatenation of L_{1} and L_{2}, is

$$
\left\{x y: x \in L_{1}, y \in L_{2}\right\}
$$

- Thus if L_{1} is $\{a, b\}$ and L_{2} is $\{c, d\}$ then $L_{1} \circ L_{2}$ is $\{a c, a d, b c, b d\}$.
- If L_{1} is $\{\epsilon, a, a a, a a a, \ldots\}$ and L_{2} is $\{\epsilon, b, b b, b b b, \ldots\}$ then what is $L_{1} \circ L_{2}$?
- Note that for any $L,\{\epsilon\} \circ L=L \circ\{\epsilon\}=L$.

To get $L_{1} \circ L_{2}$, write L_{1} as a sequence above L_{2}, then selecting one element from each and concatenating them gives an element of $L_{1} \circ L_{2}$:

$$
\begin{aligned}
L_{1} & =\left\{x_{1}, x_{2}, x_{3}, \ldots\right\} \\
L_{2} & =\left\{w_{1}, w_{2}, w_{3}, \ldots\right\}
\end{aligned}
$$

1.4.3 Kleene Star

If L is a language then L^{*}, the Kleene star of L, is

$$
\left\{w_{1} w_{2} \ldots w_{k}: k \geq 0, w_{i} \in L \text { all } i\right\}
$$

This can also be written as

$$
\{\epsilon\} \cup L \cup(L \circ L) \cup(L \circ L \circ L) \cup \ldots
$$

or as

$$
\{\epsilon\} \cup L \cup L^{2} \cup L^{3} \cup \ldots
$$

To get the Kleene star, write a language above itself infinitely many times, then select one element from some finite number of the lists (possibly zero) and concatenate them:

$$
\begin{aligned}
L & =\left\{x_{1}, x_{2}, x_{3}, \ldots\right\} \\
L & =\left\{x_{1}, x_{2}, x_{3}, \ldots\right\} \\
L & =\left\{x_{1}, x_{2}, x_{3}, \ldots\right\} \\
L & =\left\{x_{1}, x_{2}, x_{3}, \ldots\right\}
\end{aligned}
$$

This gives an element of L^{*}.
Examples: If L is $\{00,01,10,11\}$, what is L^{*} ?
If L is $\{00\}$, what is L^{*} ?
If L is $\{00,11\}$, what are some strings in L^{*} ?
If L is $\left\}\right.$, then L^{*} is $\{\epsilon\}$.
If L is $\{\epsilon\}$, then L^{*} is also $\{\epsilon\}$.

1.4.4 Plus

Another operation on languages:

$$
L^{+}=L \circ L^{*}=\left\{w_{1} w_{2} \ldots w_{k}: k>0, w_{i} \in L \text { all } i\right\}
$$

To get L^{+}, write a language above itself infinitely many times, then select one element from some finite number of the lists (at least one) and concatenate them:

$$
\begin{aligned}
L & =\left\{x_{1}, x_{2}, x_{3}, \ldots\right\} \\
L & =\left\{x_{1}, x_{2}, x_{3}, \ldots\right\} \\
L & =\left\{x_{1}, x_{2}, x_{3}, \ldots\right\} \\
L & =\left\{x_{1}, x_{2}, x_{3}, \ldots\right\}
\end{aligned}
$$

This gives an element of L^{+}.
What is L^{+}for the three languages L given above?
If L is $\{e, 00,01,10,11\}$, what is L^{*} ? What is L^{+}?

1.4.5 Union

Of course, if L_{1} and L_{2} are languages, then $L_{1} \cup L_{2}$ is another language, so that union is another operation on languages.

Note that operations can be nested, so that if A and B are languages, we can talk about $(A \circ B) \cup A^{*}$, for example. Thus arbitrary expressions can be made from languages using these operations repeatedly.

Some identities:

$$
\begin{gathered}
L^{*}=\{\epsilon\} \cup L \cup(L \circ L) \cup(L \circ L \circ L) \cup \ldots \\
L^{*}=\{\epsilon\} \cup\left(L \circ L^{*}\right) \\
L^{+}=L \circ L^{*}
\end{gathered}
$$

$$
\begin{gathered}
L^{+}=L \cup(L \circ L) \cup(L \circ L \circ L) \cup \ldots \\
L^{+}=L \cup\left(L \circ\left(L^{+}\right)\right) \\
L^{*}=\{\epsilon\} \cup L^{+}
\end{gathered}
$$

See Handout 2 (Rules of Inference for Operations on Languagse).
Problem 1.7.4 (c) page 46: Show

$$
\{a, b\}^{*}=\{a\}^{*}\left(\{b\}\{a\}^{*}\right)^{*}
$$

